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Glomerular basement membrane and related
glomerular disease

YING MAGGIE CHEN, and JEFFREY H. MINER

ST. LOUIS, MO

The glomerular basement membrane (GBM) is lined by fenestrated endothelium
from the capillary-lumen side and by interdigitating foot processes of the podocytes
from the urinary- space side. These three layers of the glomerular capillary wall con-
stitute the functional unit of the glomerular filiration barrier. The GBM is assembled
through an interweaving of type IV collagen with laminins, nidogen, and sulfated
proteoglycans. Mutations in genes encoding LAMB2, COL4A3, COL4A4, and
COL4AS5 cause glomerular disease in humans as well as in mice. In addition, laminin
o5 mutation in podocytes leads to proteinuria and renal failure in mice. Moreover,
more neoepitopes in Goodpasture’s disease and for the first time alloepitopes in
Alport post-transplantation nephritis have been located in the collagen a5(1V) NC1
domain. These discoveries underscore the importance of the GBM in establishing
and maintaining the integrity of the glomerular filiration barrier. (Translational
Research 2012;160:291-297)

Abbreviations: APTN = Alport post-transplantation nephritis; AS = Alport syndrome; BM = base-
ment membrane; CCR2 = CC chemokine receptor 2; EA = epitope A; EB = epitope B; GAG =
glycosaminoglycan; GBM = glomerular basement membrane; GFB = glomerular filtration bar-
rier; HSPG = heparan sulfate proteoglycan; LAMB2 = laminin b2; LG domain = laminin globular
domain; LN = laminin NH2-terminal; MCP-1 = monocyte chemoattractant protein-1; MM = me-
sangial matrix; MMP-12 = maftrix metalloproteinase-12; NC1 = noncollagenous domain 1; SD =
slit diaphragm; TBMN = thin basement membrane nephropathy

he kidney glomerular basement membrane (GBM)
is an unusually thick basement membrane (BM)
formed via fusion of distinct BMs assembled by
podocytes and glomerular endothelial cells." BMs are
sheets of specialized extracellular matrix that underlie
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all endothelial and epithelial cells and surround all mus-
cle cells, fat cells, and peripheral nerves. They influence
cell proliferation, differentiation, migration, and sur-
vival. BMs are also involved in filtration, in tissue
compartmentalization, and in maintenance of epithelial
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Fig 1. Laminin trimers and assembly. A, Structure of a typical cruciform laminin a3y heterotrimer, with some
domain names indicated. B and C, Mechanism for polymerization of laminin trimers. D, The proposed mecha-
nisms of the R246Q missense mutation causing congenital nephrotic syndrome. It may inhibit laminin secretion
from podocytes, eventually leading to degradation intracellularly. In addition, the affected R246Q in the LN do-
main of laminin 32 may impair the polymerization of laminin trimers to form the GBM. (Permission granted by

Journal of the American Society of Nephrology.)

integrity. The GBM, like all BMs, contains members of
4 classes of proteins: laminin, type IV collagen, nido-
gen, and sulfated proteoglycans.”

Of the 9 known matrix proteins present in the mature
GBM (laminins a5, 82, yl; collagen IV a3, a4, a5;
nidogen-1 and nidogen-2; and agrin), mutations in 4
of them (laminin B2, collagen a3(IV), collagen a4
[IV], and collagen a5[IV]) have been identified to cause
glomerular disease in human. Furthermore, the new
identification of collagen «5(IV) noncollagenous
domain 1 (NC1) epitopes targeted by Goodpasture
autoantibodies or Alport post-transplantation nephritis
alloantibodies has provided novel insights into the mo-
lecular basis of these 2 forms of anti-GBM nephritis.

LAMININ AND PIERSON SYNDROME

Laminins are heterotrimeric glycoproteins containing
1 a, 1, and 1 ychain. Figure 1, A shows a typical lam-
inin heterotrimer. The major laminin heterotrimer in the
mature GBM is laminin a582vy1, or LM-521.° LM-521
is secreted by both podocytes and endothelial cells.*
During glomerulogenesis, there is a transition in lami-
nin gene expression, such that the 181yl (LM-111)
and a5B1vy1 (LM-511) trimers are present in the nascent
GBM, but are replaced by LM-521 as maturation
progresses.”® Laminin trimerization occurs in the
endoplasmic reticulum and involves association of the
three chains along their a-helical laminin coiled-coil
domains to form the long arm.” Once trimers are se-
creted into the extracellular space, they polymerize to

form a supramolecular network via interactions among
the «, B, and vy short arm NH2-termini (called LN do-
mains)® (Fig 1, B and C). The large COOH-terminal
laminin globular (LG) domain of « chains mediates
laminin and BM interactions with cellular receptors.
Therefore, laminin polymerization both initiates base-
ment membrane formation and provides signals to the
adjacent cells.’

Laminin 82 (LAMB?2) is acomponent of laminin-521.
Truncating or severe missense mutations in LAMB?2
cause Pierson syndrome.'® Also called microcoria-
congenital nephrosis syndrome, Pierson syndrome is
arare autosomal recessive disease characterized by con-
genital nephrotic syndrome/diffuse mesangial sclerosis,
distinct ocular abnormalities including microcoria
(small pupils), muscular hypotonia, and impairment of
vision and neurodevelopment.''™"® Children affected
by Pierson syndrome usually die within days or weeks
after birth from renal failure. However, with dialysis
and therapeutic nephrectomy, a few have lived for up
to 2 years. Lamb2-/- mice recapitulate the features of
Pierson syndrome.m'19 In contrast, patients with some
less severe missense LAMB2 mutations, such as
R246Q and C321R, exhibit nephrotic syndrome with
significantly milder extrarenal defects.?*"

To begin to investigate how specific missense muta-
tions in LAMB?2 cause proteinuria, we generated 3 lines
of transgenic mice, each with differing podocyte expres-
sion levels of R246Q-mutant rat laminin 32 (TgL°,
Tg™ed and Tg™). The transgene-derived R246Q-mutant
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B2 replaced the wild-type mouse laminin 32 in the
GBM. These transgenic mice developed much less
severe proteinuria than their nontransgenic Lamb2-
deficient littermates; the level of proteinuria correlated
inversely with the level of R246Q-LAMB2 expression.
In vitro, we tried to synthesize NH2-terminal fragments
of rat laminin 2 containing the R246Q, R246W and
C321R mutations (respectively) in transfected HEK
293 cells using a system in which the LN and LEa do-
mains were fused to a human Ig Fc domain. Although
the wild-type fusion protein was secreted into the me-
dium, the mutant fusion proteins were not. Analysis of
cell lysates showed that the mutant proteins were synthe-
sized, but they remained inside the cells. These biochem-
ical studies demonstrated that the missense mutations
result in impaired secretion of laminin. Together with
our transgenic mouse studies, our results suggest that
the R246Q mutation causes nephrotic syndrome by im-
pairing secretion of laminin-521 from podocytes into the
GBM, resulting in subnormal GBM laminin levels, lead-
ing to a more porous GBM and a leaky glomerular filtra-
tion barrier (GFB). However, high-level expression of
the R246Q mutant in Tg"™ mutants mostly overcomes
the effects of the secretion defect®” (Fig 1D). Our find-
ings highlight the importance of LAMB2 mutations in
the pathogenesis of congenital nephrotic syndrome and
suggest that therapies that can increase either expression
or secretion of the mutant form should improve selectiv-
ity of the defective GFB.

While no mutations affecting human laminin a5 or
laminin y1 have been reported, podocyte-specific abla-
tion of Lama5 resulted in varying degrees of proteinuria
and progression to renal failure, though the overall renal
phenotype was never as severe as observed in Lamb2-/-
mice.”® This is likely due to the inefficiency of Cre vs
the germ-line deletion of Lamb?2.

COLLAGEN IV AND HEREDITARY GBM
DISEASE -ALPORT SYNDROME AND THIN
BASEMENT MEMBRANE DISEASE

There are 6 chains of type IV collagen, a1 to a6, en-
coded by 3 pairs of genes on chromosomes 2, 13, and X.
Each chain has 3 domains: a short 7S domain at the
N-terminus, a long, interrupted collagenous domain in
the middle, and a noncollagenous domain (NCI) at
the C-terminus. The 6 distinct o chains are arranged
into 3 different triple helical heterotrimeric protomers:
(al),a2, a3adas, and (a5),a6. Protomers polymerize
to create collagen networks by uniting 2 trimeric NCI
domains to form NC1 hexamers, and by uniting 4 tri-
meric 7S domains to form 7S dodecamers.** At early
stages of glomerulogenesis, the (al),a2 network is
a component of GBM, Bowman’s capsule and mesan-
gial matrix (MM). During normal glomerulogenesis,
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most of the (al),a2 network is replaced by a3adas
in the GBM and by (a5),a6 in Bowman’s capsule,
with (al),a2 remaining in the subendothelial region
of the GBM and in the MM 6.%°> Experiments in mice
showed that podocytes, but not endothelial cells, syn-
thesize the a3a4a5 network.”®

Alport syndrome (AS) and thin basement membrane
nephropathy (TBMN) are genetically heterogenous
conditions characterized by structural abnormalities in
the GBM. Although both conditions typically present
with hematuria, AS is associated with proteinuria, pro-
gressive renal failure, and extrarenal syndromes. In con-
trast, TBMN is characterized by isolated persistent or
recurrent hematuria, and generally never progresses
toward end stage renal disease. The hall mark of
TBMN is diffuse attenuation of the GBM, which also
resembles the ultrastructural changes of early AS pa-
tients or Alport carriers.

Eighty-five percent of AS patients have the X-linked
form due to mutations in COL4A5. Although in most
X-linked AS patients, the 5 chain of type IV collagen
is missing from the GBM, in one study it was shown
that the COL4A5 transcript was clearly expressed in
the podocytes of one of the three X-linked AS patients
studied. Moreover, COL4A3 and COL4A4 transcripts
were readily detected in the podocytes of all three pa-
tients despite the co-absence of these two chains from
the GBM. These data suggest a post-transcriptional
regulatory mechanism for type IV collagen chains
and that transcription of the three genes is not co-
regulated.?” The COL4A5 mutations also led to strong
accumulation of a1 and a2 chains of type IV collagen
across the entire width of the GBM, and the absence of
the (a5),a6 network in Bowman’s capsule. Concomi-
tant mutations in the a6 gene, which is tightly lined to
a5 on the X, are associated with diffuse leiomyomato-
sis, although the mechanism of pathogenesis remains
unclear.

The COL4A3/4 genes are involved in both autosomal
AS and TBMN. Autosomal recessive AS accounts for
about 15% of affected individuals and arises from
either compound heterozygous or homozygous muta-
tions in COL4A3 or COL4A4. Autosomal dominant
AS and 40% of TBMN are caused by heterozygous mu-
tations in COL4A3 or COL4A4. Heterozygous muta-
tions in COL4A3 or COL4A4 typically cause the mild
abnormalities seen in TBMN, although in rare cases,
heterozygous mutations are associated with autosomal
dominant AS.”® However, although approximately
40% of patients with TBMN can be considered carriers
for autosomal recessive AS,”” linkage to COL4A3 and
COL4A4 has been excluded in some families with
TBMD, indicating that TBMD is a genetically hetero-
geneous condition.*”
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The collagen a3a4a5(IV) network is also present in
cochlea and lens capsule. This explains why many AS
patients can also present with sensorineural hearing
loss and/or eye defects. Once the lens capsule becomes
weak, the lens can herniate either anteriorly or posteri-
orly to cause lenticonus.

Immunohistologic analysis of the distribution of type
IV collagen chains in renal and skin biopsies are crucial
for the diagnosis of AS. In X-linked AS, no a3, a4, or
a5 deposition in the GBM is detectable in male patients
because once a5 is missing, the formation of the
a3ada5(1V) protomer is disrupted. In contrast, the dis-
tribution of a3a4a5(IV) trimers in the GBM is mosaic
in a female carrier. In autosomal recessive AS, there is
no a3, a4, or a5 positive staining in the GBM. The
al and a2 chains, which are normally confined to the
mesangium and the subendothelial aspect of the
GBM, are present throughout the entire width of the
GBM in both forms of AS.

In X-linked AS, skin biopsy, which is much less inva-
sive than kidney biopsy, can be highly informative be-
cause the (a5),a6 collagen IV network is normally
present in the epidermal basement membrane. Thus,
a5 staining is absent from the epidermal basement
membrane of male patients, whereas segmental staining
of a5 is seen in female carriers. In contrast, normal
staining of the epidermal basement membrane is ob-
served in patients with autosomal recessive or autoso-
mal dominant AS.*" If the suspicion of X-linked AS is
high based on family history, a skin biopsy should be
performed first. Otherwise, a renal biopsy should be per-
formed.*

The characteristic electron microscopic findings of the
GBM in AS are irregular thickening, thinning and basket
weaving, which consists of irregular splitting of the lam-
ina densa, giving rise to multiple thin interwoven lamellae
separated by lucent space.*® The molecular mechanisms
underlying these ultrastructural changes are still obscure.
It has been suggested that the thickened GBM may repre-
sent areas of matrix deposition.*m‘35 Furthermore, it has
been shown that the anomalous persistence of the fetal
al1(IV) and a2(IV) isoforms in AS confers an increased
susceptibility to endoproteolytic cleavage as compared
to the more cysteine-rich a3a4a5(IV) network in the ma-
ture GBM of normal kidneys; this may explain the pro-
gressive GBM splitting and increased deterioration.*®
Recently, it has been demonstrated that the proteolytic
degradation of the GBM in a3(IV) knockout Alport
mice may be mediated, in part, by induction of matrix
metalloproteinase-12 (MMP-12) in podocytes. It has
also been suggested that monocyte chemoattractant pro-
tein -1 (MCP-1) activation of CC chemokine receptor 2
(CCR2) on podocytes may underlie the elevated expres-
sion of MMP-12.%7
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COLLAGEN IV AND ACQUIRED ANTI-GBM
NEPHRITIS - GOODPASTURE’S DISEASE AND
ALPORT POST-TRANSPLANTATION NEPHRITIS

There are two forms of anti-GBM nephritis: Good-
pasture’s disease and Alport post-transplantation ne-
phritis (APTN). Goodpasture’s disease is a disorder in
which circulating autoantibodies attack the GBM and/
or pulmonary alveolar BM, thereby causing rapidly pro-
gressive glomerulonephritis with crescent formation
and/or pulmonary hemorrhage. Epitopes A and B (Ep
and Ep), located in the @3 chain NC1 domain, were
identified as the Goodpasture autoantigen.’**° APTN
occurs in 3% to 5% of Alport patients who receive
renal transplants. The recipient can sometimes mount
an alloimmune response against the normal type IV
collagen existing in the normal donor kidney.
However, the target antigen in APTN had been elusive.

Recent work from Billy Hudson’s group has ad-
vanced our understanding of the pathogenesis of these
two forms of antibody-mediated glomerulonephritis.*!
Besides E 4 and Eg identified in «3NC1, they discovered
anew E, region in the o5 NC1 domain as a Goodpasture
autoantigen. In addition, these investigators identified
the E5 region in @5 NCI as the alloantigen in APTN.
It is more intriguing that their new work showed a clear
difference between neoepitopes in Goodpasture’s
disease and alloepitopes in APTN. The amino acid res-
idues in neoepitopes are cryptic and sequestered in the
quaternary structure of the hexamers. Disruption of
the hexamer changes the conformation and exposes
neoepitopes to elicit the production of Goodpasture au-
toantibodies. In sharp contrast, the amino acid residues
in alloepitopes are exposed on the surface of the hex-
amer, and binding with APTN alloantibodies decreases
upon dissociation of the hexamer. In Goodpasture’s dis-
ease, they hypothesize that a variety of triggering events
including post-translational modifications (oxidation,
nitrosylation, and glycation), proteolytic cleavage and
environmental factors such as cigarette smoking or ex-
posure to organic solvents promote the conformational
transition to a dissociated pathogenic conformer that
elicits an autoimmune response.

HEPARAN SULFATE PROTEOGLYCANS

The charge selectivity of the GFB has been the subject
of extensive investigations for decades. Heparan- and
chondroitin-sulfate glycosaminoglycan (GAG) side
chains of heparan sulfate proteoglycans (HSPGs) endow
the GBM with its electronegative charge. Three distinct
BM-HSPGs have been identified: perlecan, collagen
XVIII, and agrin. Glomerular charge selectivity was at-
tributed to the GBM’s anionic sites enriched with
HSPGs.*** However, this concept has been challenged.
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Perlecan and collagen XVIII are localized primarily
to the MM and Bowman’s capsule and are only prominent
in the GBM during development.*®*’ Whereas perlecan
mutant mice (Hspg24¥4%) lacking attachment sites
for three heparan sulfate side chains exhibited no
morphologic abnormalities in kidneys, they had a greater
susceptibility to protein overload.**** Gene ablation
studies of collagen XVIII in mice showed that the
mutants have mild MM expansion and slightly
elevated serum creatinine levels compared with the
controls. However, the study did not reveal any change
of the GBM in the knockout mice.”® Agrin is the predom-
inant GBM-HSPG at maturity, and it is derived primarily
from podocytes. Podocyte-specific knockout of agrin
demonstrated that despite a marked reduction in the
number of anionic sites in the GBM, the GFB was not
compromised, even when challenged with albumin over-
load. These findings, thus, indicate that agrin is dispens-
able for the establishment or maintenance of the
integrity of the GFB.”! Moreover, in perlecan/agrin dou-
ble mutants, the absence of perlecan-HS in combination
with agrin did not cause proteinuria, and excretion of
a negatively charged Ficoll tracer was unchanged as
compared to that in wild type mice.’” In line with these
findings, reduction of anionic sites in the GBM by hep-
aranase by using mice overexpressing heparanase did
not lead to proteinuria.>

The charge selectivity of the GFB is highly controver-
sial. In view of the recent in vivo studies, it appears that
the GBM does not play a significant role in the charge-
selective properties of the GFB. Recently, Axelsson
et al>* has demonstrated that the diffusion of conforma-
tionally identical anionic Ficoll across the rat GFB was
significantly reduced compared with that of neutral
Ficoll. This finding is in contrast with their previous
finding of increased glomerular permeability of nega-
tively charged Ficoll relative to neutral Ficoll.>® Their
explanation is that the charge modification of Ficoll in
their previous study had significantly increased the mo-
lecular radius for all molecular weights, making it more
flexible and hyperpermeable across the GFB compared
with neutral Ficoll. Based on this finding and other ex-
perimental evidence indicating that the GFB does retard
anionic proteins compared with neutral or cationic pro-
teins,”®>® they speculate that the charge selectivity of
the GFB may reside in the endothelial glycocalyx.

NIDOGENS

Nidogens 1 and 2, also known as entactins 1 and 2, are
BM glycoproteins expressed by distinct genes located on
different chromosomes.’*®' They bind tightly to the
laminin vyl chain short arm and also bind to type IV
collagen. Therefore, previously it was thought that
nidogens are the major molecular link between the

Chen and Miner 295

laminin and collagen IV networks and should, therefore,
be crucial for BM formation. However, this notion is
not supported by the gene deletion studies. The loss of
either isoform had no effect on BM formation and
organ development.®>®* However, genetic ablation of
both nidogens 1 and 2 in mice resulted in perinatal
lethality, which was associated with impaired lung and
cardiac development. But despite the ubiquitous
presence of nidogens in basement membranes, most of
the nidogen double-null mice had developed functioning
kidneys with well-defined GBM, suggesting tissue-
specific roles of nidogen in the formation and mainte-
nance of certain basement membranes.®*

CONCLUSION

Various studies have been performed to delineate
whether the GBM or the slit diaphragm (SD), a cell-
cell junction spanning the spaces between the interdig-
itating foot processes, is the primary filtration barrier of
kidney. In recent years, the composition and functions
of the SD have been extensively investigated. However,
the GBM should not be overlooked. To maintain the in-
tegrity of the GFB, it appears that the laminin and type
IV collagen networks of the GBM are critical, while
HSPG and nidogen are dispensable.

For several decades, the GBM has been envisioned as
being a charge-selective barrier for glomerular filtra-
tion. However, the recent genetic studies including agrin
deletion and compound agrin/perlecan deletion in the
GBM have challenged the traditional concept. It seems
that the GBM does not contribute much to the charge se-
lectivity of the GFB. It has been postulated that the en-
dothelial cell layer may exert more pronounced effect
on the charge selectivity of the GFB. Further experi-
mentation will be required to elucidate the exact mech-
anisms of the charge-selectivity of the GFB.

In conclusion, all strata of the glomerular capillary
wall including GBM, podocytes and endothelial cells
operate in a synchronic and integrated manner to main-
tain the permselectivity of the GFB.
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